K-best Viterbi Semi-supervized Active Learning in Sequence Labelling
نویسندگان
چکیده
In application domains where there exists a large amount of unlabelled data but obtaining labels is expensive, active learning is a useful way to select which data should be labelled. In addition to its traditional successful use in classification and regression tasks, active learning has been also applied to sequence labelling. According to the standard active learning approach, sequences for which the labelling would be the most informative should be labelled. However, labelling the entire sequence may be inefficient as for some its parts, the labels can be predicted using a model. Labelling such parts brings only a little new information. Therefore in this paper, we investigate a sequence labelling approach in which in the sequence selected for labelling, the labels of most tokens are predicted by a model and only tokens that the model can not predict with sufficient confidence are labelled. Those tokens are identified using the k-best Viterbi algorithm.
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملCarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning
The growth of information available to learning systems and the increasing complexity of learning tasks determine the need for devising algorithms that scale well with respect to all learning parameters. In the context of supervised sequential learning, the Viterbi algorithm plays a fundamental role, by allowing the evaluation of the best (most probable) sequence of labels with a time complexit...
متن کاملThe k-best paths in Hidden Markov Models. Algorithms and Applications to Transmembrane Protein Topology Recognition
Traditional algorithms for hidden Markov model decoding seek to maximize either the probability of a state path or the number of positions of a sequence assigned to the correct state. These algorithms provide only a single answer and in practice do not produce good results. The most mathematically sound of these algorithms is the Viterbi algorithm, which returns the state path that has the high...
متن کاملGeneralized Baum-Welch and Viterbi Algorithms Based on the Direct Dependency among Observations
The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities‎. ‎Both can be estimated using the Baum-Welch algorithm‎. ‎The process of discovering the sequence of hidden states‎, ‎given the sequence of observations‎, ‎is performed by the Viterbi algorithm‎. ‎In both Baum-Welch and Viterbi algorithms‎, ‎it is assumed that...
متن کاملBlind Estimation of Linear and Nonlinear Sparse Channels
This paper presents a Clustering Based Blind Channel Estimator for a special case of sparse channels – the zero pad channels. The proposed algorithm uses an unsupervised clustering technique for the estimation of data clusters. Clusters labelling is performed by a Hidden Markov Model of the observation sequence appropriately modified to exploit channel sparsity. The algorithm achieves a substan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017